

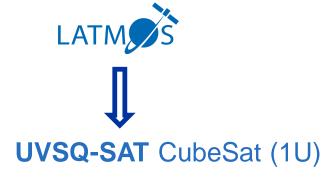
The Absolute Solar-TErrestrial Radiation Imbalance eXplorer (ASTERIX) 6U CubeSat mission:

a European contribution to the monitoring of the Earth's radiation budget from the morning orbit

Luca Schifano – RMIB and VUB (B-PHOT)


Steven Dewitte – RMIB Lien Smeesters, Francis Berghmans – VUB (B-PHOT) Mustapha Meftah, Philippe Keckhut – LATMOS Koninklijk Meteorologisch Instituut
Institut Royal Météorologique
Königliche Meteorologische Institut

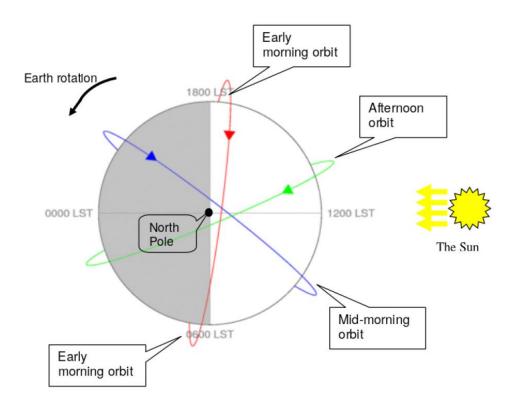
Royal Meteorological Institute



Collaboration

RMI + LATMOS

(instrumentation)

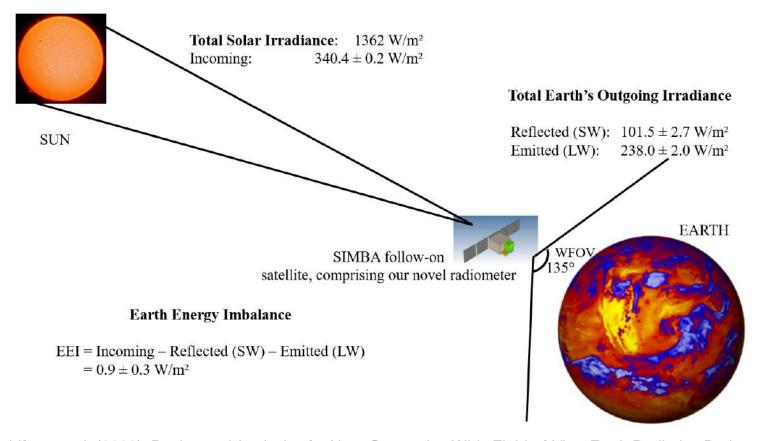


ASTERIX CubeSat (6U)

Morning orbit

Report of the WMO Tiger team (2013), Assessment of the benefits of a satellite mission in an early morning orbit

- Afternoon orbit: Aqua, NPP, NOAA-20, Libera
- Mid-morning orbit: Terra, ASTERIX


CubeSat (less cost, less time)

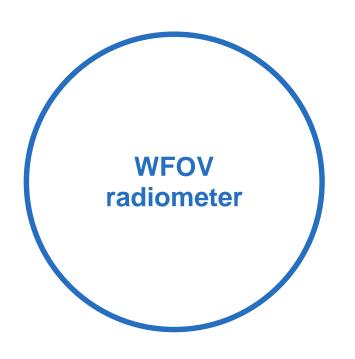
→ Complementary

Mission objective

Observing the Sun and the Earth with the same instrument

L. Schifano et al. (2020), Design and Analysis of a Next-Generation Wide Field-of-View Earth Radiation Budget Radiometer

Instruments

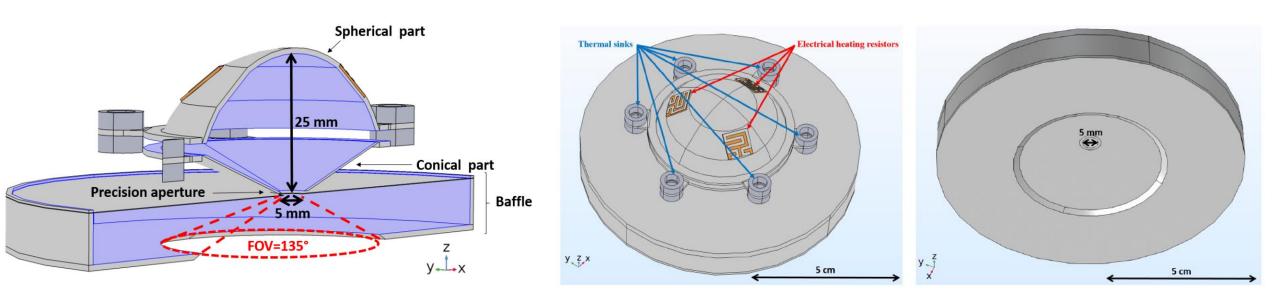

General targeted specifications

- CubeSat size: 6U
- Targeted accuracy: 1 W/m² (global annual mean ERB)
 - Targeted spatial resolution: 5 km (in SW and LW)
 - Targeted launch date: 2024 2026

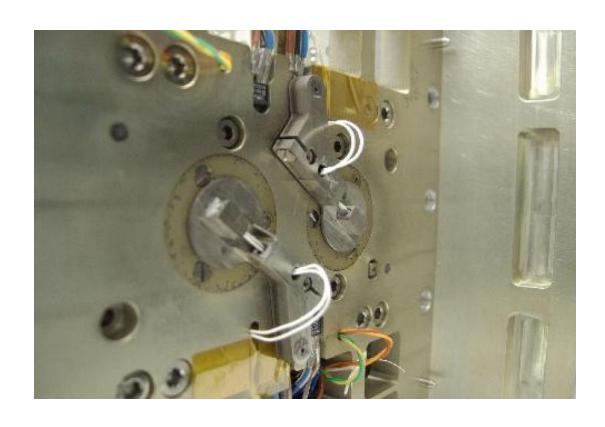
Wide field-of-view radiometer

- Field-of-view: from limb to limb (135°)
- Targeted accuracy: 1 W/m²
- Size: max. 1 CubeSat Unit

Wide field-of-view radiometer


DIARAD-type: heritage from TSI radiometers and SIMBA CubeSat (RMIB) **FOV** = **135°**

Wide field-of-view radiometer


DIARAD-type: heritage from TSI radiometers and SIMBA CubeSat (RMIB) **FOV** = **135°**

L. Schifano et al. (2020), Design and Analysis of a Next-Generation Wide Field-of-View Earth Radiation Budget Radiometer

Shutter operation

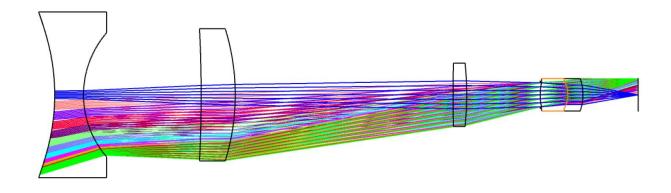
- Major issue: thermal offset

Solution: shutter

→ Differential open – closed measurement removes slowly varying thermal offsets

- Absolute accuracy = 1 W/m²

Instruments



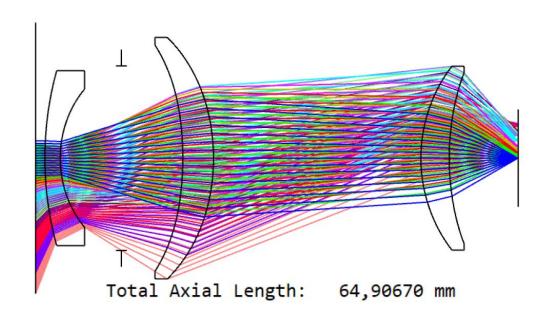
Instruments: WFOV cameras

Shortwave camera

L. Schifano et al. (2020), Optical System Design of a Wide Field-of-View Camera for the Characterization of Earth's Reflected Solar Radiation

[400 – 1100] nm

 $FOV = 140^{\circ}$


COTS detector:
Aptina MT9T031
2048x1536 pixels of 3.2 µm

Spatial resolution = 2.2 km

Broadband albedo random error < 3% across all simulated scene types and all solar-zenith angles

Longwave camera

L. Schifano et al., (in prep.) Optical System Design of a Wide Field-of-View Camera for the Characterization of Earth's Emitted Thermal Radiation

 $[8 - 14] \mu m$

 $FOV = 140^{\circ}$

COTS detector:
ULIS/Lynred Pico1024 Gen2
1064x748 pixels of 17 µm

Spatial resolution = 4.6 km

Radiative transfer simulations under study

Conclusion

- CubeSat mission (6U) with European partners
- WFOV radiometers + WFOV SW camera + WFOV LW camera
- Radiometers with shutters to remove thermal offset
- Accuracy + improved spatial resolution
- Radiometer and SW camera published in open access:
 - Radiometer: https://www.mdpi.com/2072-4292/12/3/425
 - SW camera: https://www.mdpi.com/2072-4292/12/16/2556